%Let me explain with the same example.
%To the input image Iimg applied the 'Salt & Pepper noise' with the noise ratio of 20% and named as 'Nimg'.
%Now for the 'Nimg' i applied median filter and named as Mimg.
%Now i need to find the 'Mean Square Error' MSE comparison between Mimg and Nimg.
clear all
close all
clc;
Iimg=imread('moon.tif');
[r c]=size( Iimg );
d=ndims( Iimg );
if d == 3
Iimg =rgb2gray( Iimg );
end
Iimg=double( Iimg );
Iimg= Iimg /225;
Nimg=imnoise( Iimg ,'salt & pepper',0.2);
Mimg=medfilt2( Nimg ,[5 5]);
clc;
Diff= Nimg - Mimg ;
MSE= sum(sum(Diff.* Diff)) / (r * c);
fprintf('\n\nThe Mse value is: %d',MSE1);
subplot(1,2,1);imshow( Nimg );title('Noised image');
subplot(1,2,2);imshow( Mimg );title('Denoised image');
RESULT:
The Mse value is: 2.521604e-002
i.e, MSE ~ 0.0252
%To the input image Iimg applied the 'Salt & Pepper noise' with the noise ratio of 20% and named as 'Nimg'.
%Now for the 'Nimg' i applied median filter and named as Mimg.
%Now i need to find the 'Mean Square Error' MSE comparison between Mimg and Nimg.
clear all
close all
clc;
Iimg=imread('moon.tif');
[r c]=size( Iimg );
d=ndims( Iimg );
if d == 3
Iimg =rgb2gray( Iimg );
end
Iimg=double( Iimg );
Iimg= Iimg /225;
Nimg=imnoise( Iimg ,'salt & pepper',0.2);
Mimg=medfilt2( Nimg ,[5 5]);
clc;
Diff= Nimg - Mimg ;
MSE= sum(sum(Diff.* Diff)) / (r * c);
fprintf('\n\nThe Mse value is: %d',MSE1);
subplot(1,2,1);imshow( Nimg );title('Noised image');
subplot(1,2,2);imshow( Mimg );title('Denoised image');
RESULT:
The Mse value is: 2.521604e-002
i.e, MSE ~ 0.0252
Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com