ABSTRACT
The detection and classification of plant diseases are the crucial factors in plant production and the reduction of losses in crop yield. This project proposes an approach for plant leaf disease detection and classification on plants using image processing. The plant disease diagnosis is restricted by person’s visual capabilities as it is microscopic in nature. Due to optical nature of plant monitoring task, computer visualization methods are adopted in plant disease recognition. Identification of the plant diseases is the key to preventing the losses in the yield and quantity of the agricultural product. The studies of the plant diseases mean the studies of visually observable patterns seen on the plant. Health monitoring and disease detection on plant is very critical for sustainable agriculture. It is very difficult to monitor the plant diseases manually. It requires tremendous amount of work, expertise in the plant diseases, and also require the excessive processing time. Hence, image processing is used for the detection of plant diseases. Disease detection involves the steps like image acquisition, image pre-processing, image segmentation, feature extraction and classification. This project used for the detection of plant diseases using their leaves images in matlab platform.
PROJECT OUTPUT
PROJECT DEMO VIDEO