ABSTRACT
India is an agricultural country and soybean production is one of the major sources of earning. Due to the major factors like diseases, pest attacks, and sudden changes in the weather condition, the productivity of the soybean crop decreases. Automatic detection of tomato plant diseases is essential to detect the symptoms of tomato diseases as early as they appear on the growing stage. This project proposed a methodology for the analysis and detection of tomato plant leaf diseases using recent digital image processing techniques. In this project, experimental results demonstrate that the proposed method can successfully detect and classify the major tomato leaf diseases like Bacterial Spot, Blight Disease, Leaf Curl Virus Disease , Mosaic Virus Disease and Healthy Leaf. In this Project classification done using convolutional neural network CNN.
PROJECT OUTPUT
PROJECT VIDEO