ABSTRACT
The diseases are a major problem faced by all the farmers including fruit farmers. It is a threat for large farmlands because these diseases spread throughout the land and make the fruits inedible, which at the end impact badly on the farmer’s income. Hence early disease detection is very important for the farmers to prevent or to control the propagation of the diseases. The traditional method of fruit disease detection and identification is naked eye observation. Even if this method is sufficient for a home gardener, it is a very inefficient one that requires experience and expertise. As a solution for this problem several computerized approaches are being developed using Machine Learning and Image Processing techniques in the resent researches. In our proposed work, we considered Papaya fruit, as it is a very popular fruit cultivation in Sri Lanka. In this study we have implemented a computerized model for papaya disease identification using Convolutional Neural Network (CNN). Among various diseases of papaya fruit, anthracnose, black spot, powdery mildew, phytophthora and ringspot were chosen. This intelligent system can easily detect the diseases and we are getting high accuracy up to 99 % to predict the papaya diseases.