ABSTRACT
The popular Biometric used to authenticate a person is Fingerprint which is unique and permanent throughout a person’s life. A minutia matching is widely used for fingerprint recognition and can be classified as ridge ending and ridge bifurcation. In this project we projected Fingerprint Recognition using Minutia Score Matching method (FRMSM). For Fingerprint thinning, the Block Filter is used, which scans the image at the boundary to preserves the quality of the image and extract the minutiae from the thinned image. Fingerprint is a very vital concept in making us completely unique and can not be altered. It is necessary to recognize fingerprint in proper manner. Here we are trying to recognize the fingerprint image samples by using minute extraction and minute matching techniques. In minute extraction it counts the crossing numbers and from the count it will be classified as normal ridge pixel, termination point and bifurcation point. Then the input finger print data is compared with the template data. This is called as minute matching.
PROJECT OUTPUT
PROJECT VIDEO