ABSTRACT
Audio noise reduction system is the system that is used to remove the noise from the audio signals. Audio noise reduction systems can be divided into two basic approaches. The first approach is the complementary type which involves compressing the audio signal in some well-defined manner before it is recorded (primarily on tape). The second approach is the single-ended or non-complementary type which utilizes techniques to reduce the noise level already present in the source material in essence a playback only noise reduction system. Noise reduction is the process of removing noise from a signal.Digital filters effectively reduce the unwanted higher or lower order frequency components in a speech signal. In this paper the speech enhancement is performed using different digital filters .In this real noisy environment is taken into consideration in the form of Gaussian noise. The Time domain as well as frequency domain representation of the signal spectra is performed using Fast Fourier transformation technique. MATLAB in built functions are used to carry out the simulation. Gaussian type noise is added using in-built function randn () and keyboard noise is added as a second speech file to the original speech signal. The filters remove the lower frequency components of noise and recover the original speech signal. It is also observed that keyboard noise is typical to remove as compared to Gaussian type but these filters performed well to get sharper spectra of original speech signal. Speech signal analysis is one of the important areas of research in multimedia applications. Discrete Wavelet technique is effectively reduces the unwanted higher or lower order frequency components in a speech signal. Wavelet-based algorithm for audio de-noising is worked out. We focused on audio signals corrupted with white Gaussian noise which is especially hard to remove because it is located in all frequencies.
PROJECT OUTPUT
PROJECT VIDEO
Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com