Top 10 Image Processing Projects With Source Code | Top 10 Final Year Projects With Source Code



Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com



Share:

Medicinal Leaf Recognition Using Image Processing Python Project Source Code || IEEE Based Projects

 ABSTRACT

            Image processing is the recent growing technique in the world. It refers to the processing of digital images by means of a digital computer. Images play a major role in human perception. Image analysis is between image processing and computer vision. There are no clear boundaries for in continuum with image processing and computer vision. The useful paradigms for computerized process in determining the image is classified in to three types are low-level process: involve primitive operation such as image pre processing to reduce noise, image enhancement and image sharpening, mid-level: image segmentation and high-level: making sense of image recognized. Here image processing technique is used for medicinal purpose by extracting the features of herbal leaf and authenticating it medicinal qualities. Leaves play the major role for the classification of plants. The sample leaves are taken from various places, plants and shape. The image is captured and further work is carried out. Comparison of test sample image with reference not only requires an experienced but is subjective and prone to human errors. By applying advanced technique of image processing and utilizing the capabilities of the recent advanced computing and data/image storage facilities and the use of computer techniques for analyzing the shape, texture, color, aspect ratio, vein structure, entropy, compactness and so on. The aim of the work is to classify and authenticate the medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these leaves are to be ensured for the preparation of herbal medicines. The medicinal plant leaves are thoroughly screened, analyzed and compared with the database to give the correct measures of the texture to which category the leaf belongs to. This method is adopted due to the mistaken of lookalike leaves using image processing technique the mistaken of look-alike leaves can be authenticated by various parameters of the leaves. 

PROJECT OUTPUT


PROJECT VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

DWT & DCT Based Image Compression Comparative Analysis | Matlab Project With Source Code

ABSTRACT

            The lossless compression is that allows the original data to be perfectly reconstructed from the compressed data. Lossless compression programs do two things in sequence: the first step generates a statistical model for the input data, and the second step uses this model to map input data to bit sequences in such a way that probable. The main objective of image compression is to decrease the redundancy of the image data which helps in increasing the capacity of storage and efficient transmission. Image compression aids in decreasing the size in bytes of a digital image without degrading the quality of the image to an undesirable level. Image compression plays an important role in computer storage and transmission. The purpose of data compression is that we can reduce the size of data to save storage and reduce time for transmission. Image compression is a result of applying data compression to the digital image.

PROJECT OUTPUT


PROJECT VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com
Share:

Soybean Leaf Diseases Detection Using Image Processing Python Project Source Code || Final Year Projects

ABSTRACT

          India is an agricultural country and soybean production is one of the major sources of earning. Due to the major factors like diseases, pest attacks, and sudden changes in the weather condition, the productivity of the soybean crop decreases. Automatic detection of soybean plant diseases is essential to detect the symptoms of soybean diseases as early as they appear on the growing stage. This project proposed a methodology for the analysis and detection of soybean plant leaf diseases using recent digital image processing techniques. In this project, experimental results demonstrate that the proposed method can successfully detect and classify the major soybean diseases like Soybean Rust, Powdery Mildew, Frogeye Leaf Spot, Downy Mildew, etc.

PROJECT OUTPUT


PROJECT VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Total Pageviews

CONTACT US

Prof. Roshan P. Helonde
Mobile: +917276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Enter Project Title

Popular Projects

All Archive

Contact Form

Name

Email *

Message *